Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
1.
Int J Biol Macromol ; 264(Pt 1): 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431017

RESUMO

For applications in food industries, a fungal α-amylase from Malbranchea cinnamomea was engineered by directed evolution. Through two rounds of screening, a mutant α-amylase (mMcAmyA) was obtained with higher optimal temperature (70 °C, 5 °C increase) and better hydrolysis properties (18.6 % maltotriose yield, 2.5-fold increase) compared to the wild-type α-amylase (McAmyA). Site-directed mutations revealed that Threonine (Thr) 226 Serine (Ser) substitution was the main reason for the property evolution of mMcAmyA. Through high cell density fermentation, the highest expression level of Thr226Ser was 3951 U/mL. Thr226Ser was further used for bread baking with a dosage of 1000 U/kg flour, resulting in a 17.8 % increase in specific volume and a 35.6 % decrease in hardness compared to the control. The results were a significant improvement on those of McAmyA. Moreover, the mutant showed better anti-staling properties compared to McAmyA, as indicated by the improved sensory evaluation after 4 days of storage at 4 and 25 °C. These findings provide insights into the structure-function relationship of fungal α-amylase and introduce a potential candidate for bread-making industry.


Assuntos
Pão , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/metabolismo , Hidrólise , Trissacarídeos
2.
Int J Biol Macromol ; 261(Pt 2): 129838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307428

RESUMO

A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.


Assuntos
Halomonas , Ácidos Pentanoicos , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Carbono/metabolismo , Amido/metabolismo , Hidroxibutiratos/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Poliésteres/metabolismo
3.
J Basic Microbiol ; 64(4): e2300653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212247

RESUMO

Geobacillus kaustophilus TSCCA02, a newly isolated strain from cassava (Manihot esculenta L.) rhizosphere soil in Thailand, showed maximum raw starch degrading enzyme (RSDE) activity at 252.3 ± 9.32 U/mL with cassava starch and peptone at 5.0 and 3.0 g/L, respectively. 16 S ribosomal RNA (rRNA) sequencing and phylogenetic tree analyses indicated that the TSCCA02 strain was closely related to G. kaustophilus. The crude RSDE had optimal activity at 60°C and pH 9.0. This enzyme degraded various kinds of starch including potato starch, cassava starch, rice flour, corn starch, glutinous rice flour, and wheat flour to produce sugar syrup at 60°C, as confirmed by scanning electron microscopy (SEM), thin-layer chromatography (TLC), and Fourier-transform infrared spectroscopy (FTIR). The major end products of starch hydrolysis were maltose and maltotriose with a small amount of glucose, confirming this enzyme as an α-amylase. The enzyme improved the washing efficiency of cotton fabric with commercial detergent. Results indicated the potential of alkaline α-amylase produced from a new isolate of G. kaustophilus TSCCA02 for application as a detergent additive on an industrial scale.


Assuntos
Detergentes , Geobacillus , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/química , Amido/metabolismo , Farinha , Filogenia , Triticum/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio
4.
Plant Physiol ; 194(3): 1815-1833, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38057158

RESUMO

Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.


Assuntos
Oryza , Fatores de Transcrição , Fatores de Transcrição/genética , Germinação/genética , Trealose , alfa-Amilases/genética , Temperatura , Sementes/genética , Oryza/genética
5.
Insect Biochem Mol Biol ; 165: 104059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101706

RESUMO

Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.


Assuntos
Doença de Chagas , Rhodnius , Triatoma , Animais , Rhodnius/genética , DNA , Triatoma/genética , alfa-Amilases/genética
6.
Lab Chip ; 23(16): 3704-3715, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37483015

RESUMO

Key to our ability to increase recombinant protein production through secretion is a better understanding of the pathways that interact to translate, process and export mature proteins to the surrounding environment, including the supporting cellular machinery that supplies necessary energy and building blocks. By combining droplet microfluidic screening with large-scale CRISPR libraries that perturb the expression of the majority of coding and non-coding genes in S. cerevisiae, we identified 345 genes for which an increase or decrease in gene expression resulted in increased secretion of α-amylase. Our results show that modulating the expression of genes involved in the trafficking of vesicles, endosome to Golgi transport, the phagophore assembly site, the cell cycle and energy supply improve α-amylase secretion. Besides protein-coding genes, we also find multiple long non-coding RNAs enriched in the vicinity of genes associated with endosomal, Golgi and vacuolar processes. We validated our results by overexpressing or deleting selected genes, which resulted in significant improvements in α-amylase secretion. The advantages, in terms of precision and speed, inherent to CRISPR based perturbations, enables iterative testing of new strains for increased protein secretion.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Amilases/metabolismo , Microfluídica , alfa-Amilases/genética , alfa-Amilases/metabolismo
7.
Biotechnol Bioeng ; 120(8): 2092-2116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37475649

RESUMO

Amylases are biologically active enzymes that can hydrolyze starch to produce dextrin, glucose, maltose, and oligosaccharides. The amylases contribute approximately 30% to the global industrial enzyme market. The globally produced amylases are widely used in textile, biofuel, starch processing, food, bioremediation of environmental pollutants, pulp, and paper, clinical, and fermentation industries. The purpose of this review article is to summarize recent trends and aspects of α-amylases, classification, microbial production sources, biosynthesis and production methods, and its broad-spectrum applications for industrial purposes, which will depict the latest trends in α-amylases production. In the present article, we have comprehensively compared the biodiversity of α-amylases in different model organisms ranging from archaea to eukaryotes using in silico structural analysis tools. The detailed comparative analysis: regarding their structure, function, cofactor, signal peptide, and catalytic domain along with their catalytic residues of α-amylases in 16 model organisms were discussed in this paper. The comparative studies on alpha (α) amylases' secondary and tertiary structures, multiple sequence alignment, transmembrane helices, physiochemical properties, and their phylogenetic analysis in model organisms were briefly studied. This review has documented the recent trends and future perspectives of industrially important novel thermophilic α-amylases. In conclusion, this review sheds light on the current understanding and prospects of α-amylase research, highlighting its importance as a versatile enzyme with numerous applications and emphasizing the need for further exploration and innovation in this field.


Assuntos
Amilases , alfa-Amilases , alfa-Amilases/química , alfa-Amilases/genética , Filogenia , Amilases/genética , Catálise , Amido
8.
Microb Cell Fact ; 22(1): 118, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37381017

RESUMO

BACKGROUND: Raw starch-degrading α-amylase (RSDA) can hydrolyze raw starch at moderate temperatures, thus contributing to savings in starch processing costs. However, the low production level of RSDA limits its industrial application. Therefore, improving the extracellular expression of RSDA in Bacillus subtilis, a commonly used industrial expression host, has great value. RESULTS: In this study, the extracellular production level of Pontibacillus sp. ZY raw starch-degrading α-amylase (AmyZ1) in B. subtilis was enhanced by expression regulatory element modification and fermentation optimization. As an important regulatory element of gene expression, the promoter, signal peptide, and ribosome binding site (RBS) sequences upstream of the amyZ1 gene were sequentially optimized. Initially, based on five single promoters, the dual-promoter Pveg-PylB was constructed by tandem promoter engineering. Afterward, the optimal signal peptide SPNucB was obtained by screening 173 B. subtilis signal peptides. Then, the RBS sequence was optimized using the RBS Calculator to obtain the optimal RBS1. The resulting recombinant strain WBZ-VY-B-R1 showed an extracellular AmyZ1 activity of 4824.2 and 41251.3 U/mL during shake-flask cultivation and 3-L fermenter fermentation, which were 2.6- and 2.5-fold greater than those of the original strain WBZ-Y, respectively. Finally, the extracellular AmyZ1 activity of WBZ-VY-B-R1 was increased to 5733.5 U/mL in shake flask by optimizing the type and concentration of carbon source, nitrogen source, and metal ions in the fermentation medium. On this basis, its extracellular AmyZ1 activity was increased to 49082.1 U/mL in 3-L fermenter by optimizing the basic medium components as well as the ratio of carbon and nitrogen sources in the feed solution. This is the highest production level reported to date for recombinant RSDA production. CONCLUSIONS: This study represents a report on the extracellular production of AmyZ1 using B. subtilis as a host strain, and achieved the current highest expression level. The results of this study will lay a foundation for the industrial application of RSDA. In addition, the strategies employed here also provide a promising way for improving other protein production in B. subtilis.


Assuntos
Bacillus subtilis , alfa-Amilases , Fermentação , Bacillus subtilis/genética , alfa-Amilases/genética , Carbono , Nitrogênio
9.
Planta ; 257(5): 96, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041311

RESUMO

MAIN CONCLUSION: The cumulative action of combinations of alleles at several loci on the wheat genome is associated with different levels of resistance to late maturity α-amylase in bread wheat. Resistance to late maturity α-amylase (LMA) in bread wheat (Triticum aestivum L.) involves a complex interaction between the genotype and the environment. Unfortunately, the incidence and severity of LMA expression is difficult to predict and once the trait has been triggered an unacceptably low falling number, high grain α-amylase may be the inevitable consequence. Wheat varieties with different levels of resistance to LMA have been identified but whilst some genetic loci have been reported, the mechanisms involved in resistance and the interaction between resistance loci requires further research. This investigation was focused on mapping resistance loci in populations derived by inter-crossing resistant wheat varieties or crossing resistant lines with a very susceptible line and then mapping quantitative trait loci. In addition to the previously reported locus on chromosome 7B for which a candidate gene has been proposed, loci were mapped on chromosomes 1B, 2A, 2B, 3A, 3B, 4A, 6A and 7D. These loci have limited effects on their own but have a cumulative effect in combination with each other. Further research will be required to determine the nature of the causal genes at these loci, to develop diagnostic markers and determine how the genes fit into the pathway that leads to the induction of α-AMY1 transcription in the aleurone of developing wheat grains. Depending on the target environmental conditions, different combinations of alleles may be required to achieve a low risk of LMA expression.


Assuntos
Triticum , alfa-Amilases , Triticum/genética , alfa-Amilases/genética , Locos de Características Quantitativas , Fenótipo , Genótipo
10.
BMC Genomics ; 24(1): 190, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024797

RESUMO

BACKGROUND: Starch hydrolysates are energy sources for plant growth and development, regulate osmotic pressure and transmit signals in response to both biological and abiotic stresses. The α-amylase (AMY) and the ß-amylase (BAM) are important enzymes that catalyze the hydrolysis of plant starch. Cassava (Manihot esculenta Crantz) is treated as one of the most drought-tolerant crops. However, the mechanisms of how AMY and BAM respond to drought in cassava are still unknown. RESULTS: Six MeAMY genes and ten MeBAM genes were identified and characterized in the cassava genome. Both MeAMY and MeBAM gene families contain four genes with alternative splicing. Tandem and fragment replications play important roles in the amplification of MeAMY and MeBAM genes. Both MeBAM5 and MeBAM10 have a BZR1/BES1 domain at the N-terminus, which may have transcription factor functions. The promoter regions of MeAMY and MeBAM genes contain a large number of cis-acting elements related to abiotic stress. MeAMY1, MeAMY2, MeAMY5, and MeBAM3 are proven as critical genes in response to drought stress according to their expression patterns under drought. The starch content, soluble sugar content, and amylase activity were significantly altered in cassava under different levels of drought stress. CONCLUSIONS: These results provide fundamental knowledge for not only further exploring the starch metabolism functions of cassava under drought stress but also offering new perspectives for understanding the mechanism of how cassava survives and develops under drought.


Assuntos
Manihot , beta-Amilase , Resistência à Seca , Manihot/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Biochem Biophys Res Commun ; 653: 69-75, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857902

RESUMO

The medium-temperature alpha-amylase of Bacillus amyloliquefaciens is widely used in the food and washing process. Enhancing the thermostability of alpha-amylases and investigating the mechanism of stability are important for enzyme industry development. The optimal temperature and pH of the wild-type BAA and mutant MuBAA (D28E/V118A/S187D/K370 N) were all 60 °C and 6.0, respectively. The mutant MuBAA showed better thermostability at 50 °C and 60 °C, with a specific activity of 206.61 U/mg, which was 99.1% greater than that of the wild-type. By analyzing predicted structures, the improving thermostability of the mutant MuBAA was mainly related to enhanced stabilization of a loop region in domain B via more calcium-binding sites and intramolecular interactions around Asp187. Furthermore, additional intramolecular interactions around sites 28 and 370 in domain A were also beneficial for improving thermostability. Additionally, the decrease of steric hindrance at the active cavity increased the specific activity of the mutant MuBAA. Improving the thermostability of BAA has theoretical reference values for the modification of alpha-amylases.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Sequência de Aminoácidos , alfa-Amilases/genética , alfa-Amilases/química , alfa-Amilases/metabolismo , Estabilidade Enzimática , Temperatura , Mutação
12.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611986

RESUMO

Feeding is crucial for the growth and survival of animals, including humans, but relatively little is known about how it is regulated. Here, we show that larval feeding in Ostrinia furnacalis is regulated by neuropeptide F (NPF, the homologous peptide of mammalian NPY) via the insulin signalling pathway in the midgut. Furthermore, the genes pi3k and mtor in the insulin pathway positively regulate α-amylase and lipase of the midgut by recruiting the transcription factors c-Myc and PPARγ for binding to the promotors of these two enzymes. Importantly, we find that the feeding behaviour and the digestive system of midgut in O. furnacalis larvae are closely related and interactive in that knocking down α-amylase or lipase induces a reduction in larval feeding, while food-deprived larvae lead to fewer expressions of α-amylase and lipase. Importantly, it is the gut NPF that regulates the α-amylase and lipase, while variations of α-amylase and lipase may feed back to the brain NPF. This current study reveals a molecular feedback mechanism between feeding behaviour and the digestive system that is regulated by the conserved NPF via insulin signalling systems in the midgut of O. furnacalis larvae.


Assuntos
Insulinas , Mariposas , Animais , Humanos , Larva/genética , Lipase , Digestão , alfa-Amilases/genética , Mamíferos
13.
Appl Biochem Biotechnol ; 195(1): 68-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35969299

RESUMO

To improve fermentative production of α-amylase, heavy-ion mutagenesis technology was used to irradiate Bacillus subtilis (B. subtilis) to obtain the high yielding mutants in this study. After continuous cultivation for 12 generations, eight mutants exhibited positive mutation rate with greater H/C. The α-amylase production was stable and obviously exceeded that by the parent strain, which shows that the mutants have a good genetic stability. Among the mutants, the α-amylase activity of B. subtilis KC-180-2 was 72.26 U·mL-1, which was 82.34% higher than that of the original strain. After optimization of fermentation conditions and media, the α-amylase activity of B. subtilis KC-180-2 reached a maximum of 156.83 U·mL-1 at 36 h in a bioreactor. In addition, the optimized fermentation temperature of B. subtilis KC-180-2 was increased to 49℃, indicating B. subtilis KC-180-2 possesses high-temperature resistance, which has great application prospects for industrial fermentation for α-amylase production.


Assuntos
Íons Pesados , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Mutagênese , Fermentação
14.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36564025

RESUMO

Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation. Since these classes of RNA are also understudied, we targeted the corresponding genomic regions with CRIPSRi knockdown to test for any potential impact on the yield. From differentially expression analysis, we selected 53 non-coding candidates. Although CRISPRi knockdowns target both the sense and the antisense strand, the CRISPRi experiment cannot link causes for yield changes to the sense or antisense disruption. Nevertheless, we observed on several instances with strong changes in enzyme yield. The knockdown targeting the genomic region for a putative antisense RNA of the 3' UTR of the skfA-skfH operon led to a 21% increase in yield. In contrast, the knockdown targeting the genomic regions of putative antisense RNAs of the cytochrome c oxidase subunit 1 (ctaD), the sigma factor sigH, and the uncharacterized gene yhfT decreased yields by 31 to 43%.


Assuntos
Bacillus subtilis , alfa-Amilases , alfa-Amilases/biossíntese , alfa-Amilases/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , RNA/genética , Análise de Sequência de RNA
15.
Biotechnol Lett ; 44(12): 1447-1463, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326957

RESUMO

Biochemical and kinetic properties are of special interest for the specific applications of α-amylases in industrial sectors such as textile industries, detergents, biofuels and food among others. Therefore, protein engineering is currently directed towards a continuous demand to improve the properties of amylases and thus meet the specific characteristics for various industrial sectors. In the present work, modular protein engineering was performed to improve the biochemical and kinetic properties of AmyJ33r an α-amylase isolated from Bacillus siamensis JJC33M consisting of five domains, A, B, C, D and E (SBD) (Montor-Antonio et al. in 3 Biotech 7:336, 2017. https://doi.org/10.1007/s13205-017-0954-8 ). AmyJ33r is not active on native starch, only showing activity on gelatinized starch. At the C-terminal, AmyJ33r has a starch binding domain (SBD, domain E) belonging to the CBM26 family. In this study, four truncated versions were constructed and expressed in E. coli (AmyJ33-AB, AmyJ33-ABC, AmyJ33-ABCD, and SBD) to determine the role of the A, B, C, D, and E domains in the biochemical behavior of AmyJ33r on starch. Biochemical and kinetic characterization of the truncated versions showed that domain C is essential for catalysis; domain D improved enzyme activity at alkaline pH values, is also involved negatively in thermostability at 40, 50, and 60 °C and its presence favored the production of maltooligosaccharides with a higher degree of polymerization (DP4). E domain have interaction with raw starch, also the deletion of E domain (SBD) favors the affinity for the substrate while the deletion of D domain increased enzyme kcat at the time of product release. In conclusion, AmyJ33-ABC has better kinetic parameters than AmyJ33-ABCD and AmyJ33r, but is less stable than these two enzymes.


Assuntos
Amilases , Escherichia coli , alfa-Amilases/genética , Amilases/genética , Catálise , Escherichia coli/genética , Amido , Biocatálise
16.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362160

RESUMO

Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2- levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors.


Assuntos
Arabidopsis , Morus , Arabidopsis/genética , Arabidopsis/metabolismo , Morus/genética , Morus/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Botrytis/metabolismo , Subtilisinas/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Resistência à Doença/genética
17.
Sci Rep ; 12(1): 17847, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284171

RESUMO

Ionizing radiation can not only reduce the yield of rice but also cause rice toxicity, and consumption of this kind of rice threatens human health. Moreover, the production and application of freon has further caused a hole in the earth's ozone layer, increasing the amount of ionizing radiation from the sun affecting rice. To select and breed new radiation-resistant rice varieties, dry seeds of the indica-japonica subspecies of tetraploid rice subjected to different doses of ionizing radiation were investigated for their responses during germination. The results showed that the relative water absorption, seed vigour and GA3 content sharply decreased in response to three different doses of ionizing radiation, and the regulation of the expression of genes related to α-amylase synthesis and gibberellin metabolism was disrupted. Moreover, the degree of inhibition increased with increasing dose. Notably, under 3.0 × 1017 ions/cm2 radiation, an upregulation of OsGA3ox2 expression resulted in a sharp increase in GA3 content in the indica-japonica tetraploid rice, and upregulated expression of OsAmy3A and OsAmy3D resulted in sharp increase in α-amylase activity, water absorption, and sucrose and fructose contents, which resulted in the seed vigour being greater than that of its parents. The results indicate that additional research on the physiological and molecular features of indica-japonica tetraploid rice seed germination in response to ionizing radiation is needed.


Assuntos
Oryza , Humanos , Oryza/metabolismo , Germinação/fisiologia , Sementes/metabolismo , Giberelinas/metabolismo , Tetraploidia , Ozônio Estratosférico , Melhoramento Vegetal , alfa-Amilases/genética , alfa-Amilases/metabolismo , Íons/metabolismo , Sacarose/metabolismo , Água/metabolismo , Frutose/metabolismo
18.
Bioprocess Biosyst Eng ; 45(11): 1839-1848, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36136173

RESUMO

Higher activity and alkaline α-amylases are desired for textile desizing and detergent additive. Here, rational design was used to improve the specific activity and thermostability of the α-amylase BLA from Bacillus licheniformis. Seventeen mutants of BLA were designed based on sequence consensus analysis and folding free energy calculation, and characterized by measuring their respective activity and thermostability at pH 8.5. Among them, mutant Q360C exhibited nearly threefold improved activity than that of wild-type and retained a higher residual activity (75% vs 59% for wild-type) after preincubation at 70 â„ƒ for 30 min. The modeled structures and molecular dynamics simulations analysis demonstrated that the enhanced hydrophobic interaction near residue 360 and reduced disturbance to the conformation of catalytic residues are the possible reasons for the improved thermostability and activity of Q360C. The results suggest that 360th of BLA may act as a hotspot for engineering other enzymes in the GH13 superfamily.


Assuntos
alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/química , Estabilidade Enzimática , Temperatura
19.
BMC Microbiol ; 22(1): 205, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996113

RESUMO

BACKGROUND: Bacteria usually secrete a variety of extracellular enzymes to degrade extracellular macromolecules to meet their nutritional needs and enhance their environmental adaptability. Bacillus cereus 0-9, a biocontrol bacterial strain isolated from wheat roots, has three genes annotated as encoding amylases in the genome, but their functions are unknown, and whether they are involved in the colonization process of the bacterium remains to be further studied. METHODS: Mutant gene strains and fluorescently tagged strains were constructed by homologous recombination, and amylase protein was expressed in the prokaryotic Escherichia coli BL21(DE3) expression system. The iodine staining method was used to measure the activity of amylase proteins. We further observed the colonization abilities of the test strains in wheat roots through frozen section technology. RESULTS: The results showed that there were three amylase-encoding genes, amyC, amyP and amyS, in the B. cereus 0-9 genome. Among the three amylase encoding genes, only amyS produced extracellular amylase whose secretion was related to signal peptide at position 1-27. The AmyS protein encoded by the amyS gene is an α-amylase. The growth of Rhizoctonia cerealis was inhibited 84.7% by B. cereus 0-9, but the biocontrol ability of the ΔamyS strain decreased to 43.8% and that of ΔamyS/amyS was restored when the amyS gene was complemented. Furthermore, the biocontrol ability of the ΔamySec strain was decreased to 46.8%, almost the same as that of the ΔamyS mutant. Due to the deletion of the amyS gene, the colonization capacities of ΔamyS (RFP) and ΔamySec (RFP) in wheat roots decreased, while that of ΔamyS/amyS (RFP) was restored after the amyS gene was complemented, indicating that the amyS gene influences the colonization of B. cereus 0-9 in wheat roots. In addition, the colonization and biocontrol abilities of the mutant were restored after the addition of sugars, such as glucose and maltose. CONCLUSIONS: B. cereus 0-9 encodes three genes annotated as amylases, amyC, amyP and amyS. Only the deletion of the amyS gene with a signal peptide did not produce extracellular amylase. The AmyS protein encoded by the amyS gene is an α-amylase. Our results indicated that the amyS gene is closely related to the colonization abilities of B. cereus 0-9 in wheat roots and the biocontrol abilities of B. cereus 0-9 to fight against R. cerealis. The extracellular amylase produced by B. cereus 0-9 can hydrolyze starch and use glucose, maltose and other nutrients to meet the needs of bacterial growth. Therefore, it is very possible that the secretion and hydrolytic activities of extracellular amylase can promote the colonization of B. cereus 0-9 in wheat roots and play important roles in the prevention and control of plant diseases. Our results contribute to exploring the mechanisms of microbial colonization in plant roots.


Assuntos
Bacillus cereus , Triticum , Amilases/genética , Amilases/metabolismo , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Maltose , Raízes de Plantas/microbiologia , Sinais Direcionadores de Proteínas , Triticum/microbiologia , alfa-Amilases/genética , alfa-Amilases/metabolismo
20.
Biotechnol Lett ; 44(10): 1127-1138, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35925526

RESUMO

Trichosanthes kirilowii Maxim taxonomically belongs to the Cucurbitaceae family and Trichosanthes genus. Its whole fruit, fruit peel, seed and root are widely used in traditional Chinese medicines. A ribosome-inactivating protein with RNA N-glycosidase activity called Trichosanthrip was isolated and purified from the seeds of T. kirilowii in our recent previous research. To further explore the biological functions of Trichosanthrip, the cDNA of T. kirilowii alpha-amylase inhibitor (TkAAI) was cloned through rapid-amplification of cDNA ends and its sequence was analyzed. Also, the heterologous protein was expressed in Escherichia coli and its alpha-amylase activity was further measured under optimized conditions. The full-length cDNA of TkAAI was 613 bp. The speculated open reading frame sequence encoded 141 amino acids with a molecular weight of 16.14 kDa. Phylogenetic analysis demonstrated that the Alpha-Amylase Inhibitors Seed Storage domain sequence of TkAAI revealed significant evolutionary homology with the 2S albumin derived from the other plants in the Cucurbitaceae group. In addition, TkAAI was assembled into pET28a with eGFP to generate a prokaryotic expression vector and was induced to express in E. coli. The TkAAI-eGFP infusion protein was proven to exhibit alpha-amylase inhibitory activity against porcine pancreatic amylase in a suitable reaction system. Analysis of gene expression patterns proved that the relative expression level of TkAAI in seeds is highest. The results presented here forecasted that the TkAAI might play a crucial role during the development of T. kirilowii seeds and provided fundamental insights into the possibility of T. kirilowii derived medicine to treat diabetes related diseases.


Assuntos
Trichosanthes , Albuminas , Aminoácidos , Amilases , Animais , Clonagem Molecular , DNA Complementar/genética , Escherichia coli/genética , Filogenia , Saporinas , Suínos , Trichosanthes/química , Trichosanthes/genética , alfa-Amilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...